以下文字资料是由(历史认知网 www.lishirenzhi.com)小编为大家搜集整理后发布的内容,让我们赶快一起来看一下吧!

数学家的故事─刘徽

刘徽(生于公元250年左右),是中国数学史上一个非常伟大的数学家,在世界数学史上,也占有杰出的地位.他的杰作《九章算术注》和《海岛算经》,是我国最宝贵的数学遗产.《九章算术》约成书于东汉之初,共有246个问题的解法.在许多方面:如解联立方程,分数四则运算,正负数运算,几何图形的体积面积计算等,都属于世界先进之列,但因解法比较原始,缺乏必要的证明,而刘徽则对此均作了补充证明.在这些证明中,显示了他在多方面的创造性的贡献.他是世界上最早提出十进小数概念的人,并用十进小数来表示无理数的立方根.在代数方面,他正确地提出了正负数的概念及其加减运算的法则;改进了线性方程组的解法.在几何方面,提出了"割圆术",即将圆周用内接或外切正多边形穷竭的一种求圆面积和圆周长的 ... .他利用割圆术科学地求出了圆周率π=3.14的结果.刘徽在割圆术中提出的"割之弥细,所失弥少,割之又割以至于不可割,则与圆合体而无所失矣",这可视为中国古代极限观念的佳作.《海岛算经》一书中, 刘徽精心选编了九个测量问题,这些题目的创造性、复杂性和富有代表性,都在当时为西方所瞩目.刘徽思想敏捷, ... 灵活,既提倡推理又主张直观.他是我国最早明确主张用逻辑推理的方式来论证数学命题的人.刘徽的一生是为数学刻苦探求的一生.他虽然地位低下,但人格高尚.他不是沽名钓誉的庸人,而是学而不厌的伟人,他给我们中华民族留下了宝贵的财富.刘徽从事数学研究时,中国创造的十进位记数法和计算工具“算筹”已经使用一千多年了。在世界各种各样的记数法中,十进位记数法是最先进、最方便的。中国古代数学知识的结晶“九章算术”也成书三百多年了。“九章算术”反映的是中国先民在生产劳动、丈量土地和测量容积等实践活动中所创造的数学知识,包括方田、粟米、哀分、少广、商功、均输、盈不足、方程、勾股九章,是中国古代算法的基础,它含有上百个计算公式和246个应用问题,有完整的分数四则运算法则,比例和比例分配算法,若干面积、体积公式,开平方、开立方程序,方程术--线性方程组解法,正负数加减法则,解勾股形公式和简单的测望问题算法。其中许多成就处于世界领先地位。公元元年前年,盛极一时的古希腊数学走向衰微,“九章算术”的出现,标志着世界数学研究中心从地中海沿岸转到了中国,开创了东方以应用数学为中心占据世界数学舞台主导地位千余年的局面。在编排上,“九章算术”或者先提出术文(命题),后列出几个例题,或者先列出一个或几个例题,后提出术文。然而它对所用的概念没有定义,对所有的术文没作任何推导证明,个别的公式尚有不精确或失误之处。东汉以后的许多学者都研究过“九章算术”,但理论建树不大。刘徽著作的“九章算术注”,主要是给“九章算术”的术文作解释和逻辑证明,更正其中的个别错误公式,使后人在知其然的同时又知其所以然。有了刘徽的注释,“九章算术”才得以成为一部完美的古代数学教科书。在“九章算术注”中,刘徽发展了中国古代“率”的思想和“出入相补”原理。用“率”统一证明“九章算术”的大部分算法和大多数题目,用“出入相补”原理证明了勾股定理以及一些求面积和求体积公式。为了证明园面积公式和计算园周率,刘徽创立了割园术。在这徽之前人们曾试图证明它,但是不严格。刘徽提出了基于极限思想的割园术,严谨地证明了园面积公式。他还用无穷小分割的思想证明了一些锥体体积公式。在计算园周率时,刘徽应用割园术,从园内接正六边形出发,依次计算出园内接正12边形、正24边形、正48边形,直到园内接正192边形的面积,然后使用现在称之为的“外推法”,得到了园周率的近似值3.14,纠正了前人“周三径一”的说法。“外推法”是现代近似计算技术的一个重要 ... ,刘徽遥遥领先于西方发现了“外推法”。刘徽的割园术是求园周率的正确 ... ,它奠定了中国园周率计算长期在世界上领先的基础。据说,祖冲之就是用刘徽的 ... 将园周率的有效数字精确到7位。在割园过程中,要反复用到勾股定理和开平方。为了开平方,刘徽提出了求“微数”的思想,这与现今无理根的十进小数近似值完全相同。求微数保证了计算园周率的精确性。同时,刘徽的微数也开创了十进小数的先河。刘徽治学态度严肃,为后世树立了楷模。在求园面积公式时,在当时计算工具很简陋的情况下,他开方即达12位有效数字。他在注释“方程”章节18题时,共用1500余字,反复消元运算达124次,无一差错,答案正确无误,即使作为今天大学代数课答卷亦无逊色。刘徽注“九章算术”时年仅30岁左右。北宋大观三年(1109)刘徽被封为淄乡男。

以上内容由历史认知网整理发布(.lishixinzhi.)如若转载请注明出处。部分内容来源于网络,版权归原作者所有,如有侵犯您的原创版权请告知,我们将尽快删除相关内容。

数学家的故事─刘徽的更多相关文章

  1. 胡克:牛顿剽窃他的研究成果,死不承认,在他死后烧毁他的实验室

    如果说17世界最杰出的科学家是谁?那当然是牛顿莫属。

  2. 一位民国数学家,他身边人全是大师,杨振宁:当年读他文章受教了

    民国时期的大师,多如繁星,每一位都是名满天下的人物,在皓月之光的照耀下,还有一些知名度不那么高的教育家,他们的实力非常强,只是知名度不高罢了,今天野哥的这篇文章,就是为了纪念一位名声传播不那么广泛,但是却一直未我国教育作出贡献的数学家,他的名字叫刘薰宇。杂志面世以来,得到了广大的师生好评,除了刘薰宇等人外,还吸引不少各个领域的大咖来为《中学生》杂志撰稿。

  3. 1500年前的数学家如何计算球体积?中国古代这三位真是数学神仙

    《易·系辞》中说:「”上古结绳而治,后世圣人易之以书契”,说明古人结绳和契刻的方式记数和记事。西安半坡村出土的陶器上有直线、三角、方、菱形及一些复杂的几何图形,同时期人们创造了画圆和画方的工具规和工具矩,中国的数学可以追溯到5000到6000年前。半坡陶符光影图然而,很多人认为中国的古代数学其实不是数学,最多被称为算术或者算学,不同于西方以古希腊为代表的基于逻辑推理下的数学。比如:勾股定理,无论是

  4. 从「 ”轻重缓急”看古代数理文化中的数的维度思考

    轻重缓急这个成语出自清·顾炎武《日知录》卷七:「”古之人有至于张空弮、罗雀鼠而民无二志者,非上之信有以结其心乎?此又权于缓急轻重之间而为不得已之计也。”通常被解释为:各种事情中有主要的和次要的,有急于要办的和可以慢一点办的。这种解释实际并不是很确切。轻重、缓急两个思考的侧面被分隔开来,但是古代的数理文化并非这种理解。轻重缓解的二维思考按照轻重缓急的方式进行的四种分类基于线性逻辑思考,事情可以被这样

  5. 1+1为什么等于2?你真的了解哥德巴赫猜想吗

    陈景润证明的不是1+1=2,也不是1+2=3,这是一个常见的误解。要理解1+1的意思,首先要回到哥德巴赫本身。1742年,哥德巴赫给欧拉的信中提出了以下猜想:任一大于2的整数都可写成三个质数之和。但是哥德巴赫自己无法证明它,于是就写信请教赫赫有名的大数学家欧拉帮忙证明,然而一直到死,欧拉也无法证明。

  6. 160年前德国一文科生提出的数学理论,至今无人能够证明

    费马的这一断定,直到他去世300多年后,人们才第做出了一次证明。和上述两位数学家一样神奇的是,德国的一位文科生,像费马一样提出了一个数学猜想,而这个猜想至今还没有人能够证明。根据现有的数据,截止2017年,从哥廷根大学走出的诺贝尔奖获奖人数为45人,数量为德国第2位、世界第15位。

  7. 97岁杨振宁:和爱因斯坦交谈1.5小时,我却没有得到智慧,很遗憾

    我国历史上杨振宁的出现,应该称得上是一个传奇,他23岁留美,在35岁的时候就获得了诺贝尔奖,其成就可想而知。那么他和爱因斯坦是怎样扯上关系的呢?两人在爱因斯坦的办公室里,与他谈了一个半小时。

  8. 他的文史、英语双满分,数学只有0分,被北大拒绝却被清华录取

    提及到我国近代的「”偏科学霸”们,大家心中肯定有很多人选。臧克家先生、钱钟书先生等,都是大家耳熟能详的人物。今天要说的这位「”偏科学霸”却有点儿不一样,让咱们一起来看看有什么不一样吧。这位「”偏科学霸”叫做吴晗。吴晗,浙江省义乌市人。他是我国著名历史学家、社会活动家。尤其是在研究明史上,吴晗是开拓者和奠基者之一。和其他「”偏科学霸”不一样的是,吴晗在小的时候学习并不是一帆风顺。吴晗的父亲是秀才出身

  9. 韩信的数学天赋究竟有多厉害?他留下两道题,到现在都是经典

    韩信的数学天赋究竟有多厉害?他留下两道题,到现在都是经典作为汉初三杰之一,韩信的...天赋毋庸置疑,在跟随刘邦之后,韩信也帮助刘邦击败了项羽,赢得了楚汉战争的胜利,韩信也因为超高的...天赋被人们誉为「”兵仙”,不过韩信除了超高的...天赋外,在数学方面也有很高的天赋,韩信的一生曾留下两道著名的数学题,至今都被奉为教科书式的经典。第一道数学题就是韩信点兵的故事,一次,韩信率军碰上了龙且的军队,双方

  10. 高斯不敢发表的数学原理,他发表后被权威打压,死后十二年被承认

    1823年一位三十岁出头的数学家发表了一篇论文《几何学原理》,当这篇论文被送到俄罗斯科学院进行审读时,在场的专家给出了一致的评价——狗屁不通。托西蒙诺夫、古普费尔和博拉斯曼纷纷对此表示惊讶,随后就给予了全盘否定。他的名字,他学校的名字,他研究的课题,被全天下的人知道了,罗巴切夫斯基、喀山大学、非欧几何。

随机推荐

  1. 仁同一视的意思是什么?

    【拼音】réntóngyīshì【解释】犹言一视同仁。【出处】《元典章·诏令一·成宗立皇太子诏》:“於戏!庆衍无疆,既正名于国,本仁同一视,尚均福于黎元。”【例子】无【相关】百度“仁同一视”

  2. 历史上卫青有子女吗?

    历史上卫青有子女吗?  卫青(?——前106年),字仲卿,河东平阳(今山西临汾市)人。西汉时期抗击匈奴的将领,任汉武帝时的大司马大将军,封长平侯。  卫青的首次出征是奇袭龙城,揭开汉匈战争汉朝反败为胜的序幕,曾七战七胜,收复河朔、河套地区,击破单...

  3. 被发现的隋朝千年粮仓专家称现代技术都无法超越,怎么看?

    被专家发现,并且惊叹不已的这个隋朝时期,建立的且经历了千年的粮仓,就是大名鼎鼎的「”回洛仓”。说到仓库,大家都知道它的目的就是一个,储存粮食。「”民以食为天”粮食自古以来,都是最为重要的储备物资。古代的时候,多少农民起义,都是因为缺粮,没有饭吃而导致的。所以,之后历代的君王,为了自己的统治更加长久,就都开始重视这个问题了。这也就是隋炀帝,当初建立回洛仓的原因。实际上回洛仓的建立,是在隋炀帝迁都洛阳

  4. 梦见手指被人咬

    周公解梦梦见手指被人咬是什么意思,是怎么回事,意味着啥,代表什么。做梦梦到手指被人咬是什么预兆,好不好呀,预示着未来会发生啥呢?会有啥征兆。

  5. 我并不平凡

    我敢于去和那些曾被我认为是“不平凡的人”交谈,我敢于大胆地发表自我的议论,我敢于……他只盼望着雷电交加的雨夜快点到来,好结束了这无趣、无用的生命,这样他就能够重新投胎做一个不平凡的人,做不平凡的事,从而变得有价值。

  6. 孝顺是积德改命第一法

    孝顺是积德改命第一法小时候在一个村子里生活过几年,现在回想起来,从村头数到村尾,就数不出几家真正有孝心的。对一个又老又残疾的伯父尚有此心,可以想见她对父母的孝心,以及平时的为人。而那些为人刻薄、不孝父母的,家里总是有这样那样的严重问题,种种不如意。说起改命之法、积福之途,父母才是最肥沃的福田。这些就是无与伦比的功德了。孝是一切善行之本,在家中不敬父母,一切福德都成了无根之木、无源之水。

  7. 怎么让一个只有5个人的微信群重新焕发 | 历史新知网

    怎么让一个只有5个人的微信群重新焕发活力?现在感觉各种话题都聊枯了。。没话说了好尴尬啊都这样,交往言语匮乏症,都是转发别的新闻和笑话了。五个人群聊取什么名字?三五成群求大神,英语口语考试,话题是生活中的竞争,成员有五人,对话时间10分钟。求一个英语情景对话,五个人,以“...oke”为话题。时长大概5分钟。

  8. 梦见小人是什么意思 – 周公解梦

    梦见小人,意味着要调动工作,财源会旺盛。女性梦见小人预兆有机会旅行,一路平安,有友相伴。待业者梦见小人主钱财方面佳,但防投资错误。老人梦见小人则您的运气平平,安守本份,可保平安,否则会招致坏运。投资者梦见小人,预示著投资方面会有错误的信息,对钱财上会有不利的,最后可能会亏损,自己要多注意下才行。梦见灰尘飞扬是什么意思–周公解梦

  9. 武力统一成笑话,北洋军阀的另类战争

    袁世凯死后,中国的国家机器由他培养起的北洋系军官们掌握,然而这些军官们并不是铁板一块,很快中国就进入到了军阀割据的北洋时期,国家出现「”五代”式分裂局面。这一时期,皖系及直系军阀先后控制北京中央政权,但号称「”中央”并得到「”国际承认”的直、皖北京...,实际统治区域并不大。时人指出:「”就民国全体言,则为无...,因为事实上国中已无一权力的中心可以支配全国或其大部分”。为改变中央...号令不出京

  10. 回家的旅途

    随着本学期的考试临近结束,暑假如约而至,很多小伙伴都踏上了回家的旅途。在回家的路上同学们必须要注意安全,看好自我的随身物品,祝一路顺风。自从2013年,我妈几乎一向陪伴,于今早她踏上了回家旅途,最后放心回去。

返回
顶部