以下文字资料是由(历史认知网 www.lishirenzhi.com)小编为大家搜集整理后发布的内容,让我们赶快一起来看一下吧!

  1983年12月,考古人员从湖北江陵张家山247号汉墓发掘出一批竹简,随后从中整理出一部不见于著录、早已失传的古代数学专著——《筭数书》。
  与《筭数书》同时整理出来的古代文献还有《二年律令》《奏谳书》《盖庐》《脉书》《引书》“历谱”等。“历谱”所记最后一年是西汉吕后二年,即公元前186年,估计墓主死亡不会距此太远。所以,考古人员认定《筭数书》成书年代的下限是西汉吕后二年,实际成书时间应当早于此年,可能是秦代或先秦的著作。
  《筭数书》的出土,引起国际数学史界的注意。2002年8月15日至18日在西安举行的数学史国际会议上,来自美国的数学史专家道本(JosephW.Dauben)做了“关于《筭数书》的初步研究”的报告,美国加州大学圣迭戈分校的美籍华人科学史专家程贞一做了“《筭数书》和盈不足方法”的报告,中国的几位学者也做了有关《筭数书》的研究报告。《筭数书》的研究成为这次大会的一个讨论热点。
  《筭数书》是一部数学问题集。全书有近七十个题名。题名有的以计算方法命名,如“相乘”、“分乘”、“约分”、“合分”、“径分”等;也有的以该题正文中的主题词命名,如“共买材”、“狐出关”、“息钱”、“饮漆”、“税田”、“贾盐”、“粟求米”、“负炭”、“分钱”、“方田”、“囷盖”、“以圜材方”、“以方材圜”、“里田”等。该书依“题——答——术”的体例编写。“题”,指命题,即数学问题;“答”,指解答,即对例题的解答;“术”,指由例题的解答归纳出该类问题的一般算法。全书按照内容可以分为两类:一类是整数和分数的四则运算法则;另一类是跟当时生产、生活实际密切相关的各种应用题及解法。如“羽矢”是有关造箭的应用题、“旋粟”是有关农业估产的应用题、“息钱”是有关借贷的应用题。依现代数学分类法,这些应用题有的属于算术问题,有的属于几何问题。考古人员认为,《筭数书》可能是秦汉官吏,尤其是负责经济管理工作的官吏学习数学知识的课本和工具书。
  《筭数书》涉及的算术知识包括整数、分数、比例、盈不足等问题。书中没有完整地叙述整数的运算,只是专门提出了整数的进位,“一乘一,十也;一乘十万,十万也;十乘十万,百万。十乘千,万也;十乘万,十万也;十乘十万,百万;十乘百万,千万。百乘万,百万;千乘万,千万。半乘百,五十;半乘千,五百;半乘万,五千。”其间各数全都是十进位制。十进位值制记数法简捷、明快、实用,运算方便。马克思称之为人类“最美妙的发明之一”。中国是世界上最早使用“十进位值制”记数法的国家。古代埃及采用的是“十进累计制”记数法;古巴比伦采用的是“六十进位值制”记数法;印度虽然采用的是“十进位值制”记数法,但已到了了公元6世纪。“十进位值制”记数法是中国对世界数学的卓越贡献。商周的甲骨文和钟鼎文中已有了系统的个位、十位、百位乃至万位的自然数数字,大于十的自然数都用十进位制。从殷商到战国时期,整数的加减乘除应当是很普通的算术知识,所以《筭数书》中不必再叙述了。但在“里田”的标题下,该书提出了以平方里为单位面积的土地折合成顷亩的整数简便运算方法。按照一般算法,求一平方里所合顷亩数,须先将一里化作300步,然后相乘,得若干平方步,再除以240平方步,得到亩数,计算很复杂。“里田术”提出两种解法,其一是:“里乘里,里也;广从(纵)各一里,即直一,因而三之,有(又)三五之,即为田三顷七十五亩。”用算式表示为:
  1里×1里=1平方里 (里乘里,里也。)
  1平方里×3=3 (即直一,因而三之。)
  3×5×5×5=375亩 (有(又)三五之。)
  =3顷75亩
  其二是:以第一种解法的结果为基础,即一平方里等于3顷75亩,根据乘法分配律,与任何数值的平方里相乘即得顷亩数。这种“里田术”应当是秦汉管理赋税的官吏必须掌握的算术知识。
  《筭数书》全面介绍了分数的性质和运算法则,包括通分、约分、分数的括大、缩小及四则运算。有关比例的计算题约占全书内容的一半,有正比例、反比例,分配比例、连比例、复比例,包含了现代数学全部的比例类型。《筭数书》中还有三道盈不足的问题。典型例题是“分钱”,“分钱人二而多三,人三而少二,问几何人,钱几何?得曰:五人,钱十三。术曰:嬴(盈)不足五乘母,(初中历史 www.lishirenzhi.com)并之为实,子相从为法。皆赢若不足,子互乘母而各异直之,以子少者除子多者,余为法,以不足为实。”其解法为:(1)根据题目所给条件列成2/3,3/2;(2)分子部分各是盈,不足之数。它们交叉相乘得4和9.(3)以4+9作被除数,以分子2+3作除数,得13/5,此为每人分得钱数。(4)按“置所出率,以少减多,余,以约法,实”,即3-2=1,故得钱数13,人数5.通过两次假设——盈和不足,使不能用算术方法直接求解的问题获得解答。
  《筭数书》涉及的几何知识包括面积和体积两个方面的问题。面积有9个题名,其中6个题名是有关土地面积计算的。它们是“里田”、“少广”、“启广”、“启从(纵)”、“大广”和“方田”。另外,“缯幅”,涉及面积求法;“以睘(圜)材方”和“以方材睘(圜)”是介绍圆与内接正方形与内切圆之间关系的问题。体积有6个题名。它们是“除”、“郓都”、“刍”、“旋粟”、“囷盖”和“睘(圜)亭”。它们介绍了正圆锥体、圆台体、楔形体、上、下底为矩形的长方台体等六种形状几何体体积的求解方法。这些知识应当跟战国时期筑城、挖壕、建仓和造房等工程的兴建、维修计算工作量并合理分配劳动力有关系。
  《筭数书》比传世的《九章算术》成书年代约早200年。它的出土,使我们了解到公元前2世纪,甚至更早一些时候,中国数学发展的水平和数学专著的编纂水平,形成以下几点认识:
  第一,《筭数书》记录了当时世界上最先进的分数四则运算和比例算法。科学的分数概念和运算法则,是中国古代数学家建立起来的。古埃及人曾有比较完整的分数形式,但由于太繁复,不便于运算。这就影响了古埃及算术的发展,后来也给希腊数学的发展设置了障碍。在希腊数学中缺乏分数约分和通分的法则,分数四则运算则更在其后。公元7世纪,系统的分数概念和运算法则才在印度流行,而欧洲还要迟得多。
  第二,盈不足术在中国出现的时间不会晚于公元前2世纪。在 *** 和欧洲早期的数学著作中,它被称为“契丹算法”。“契丹”是当时西方和 *** 人对中国的称呼。由此可见,盈不足术是中国古代数学家的独创。公元9世纪 *** 数学家花剌子密提出双假设法比中国古代数学家的盈不足术要晚一千多年。中国的盈不足术是以比率理论为依据导出的一种算法化的演算程式。它给不明算理的人提供了可按程序操作的应用方法,把算术应用推到顶峯。
  第三,《筭数书》中的题名“除”,即羡除。依魏晋之际杰出数学家刘徽的解释:羡除,“实为隧道也。”按例题所述是楔形体,其体积求解公式是中国古代数学家的首创。
  第四,《筭数书》采用“题——答——术”的编纂体例具有注重实用,着眼发展,便于普及的优点。例题提出的数学问题来源于社会实践,伴随着社会实践的发展,可以不断收纳新的问题,推动数学发展。例如从春秋战国时期起,漆器逐渐兴起,到秦汉时期终于取代了青铜器。生产漆器对生漆的需要量不断加大。而漆树只能生长在黄河中游的部分地区和长江流域的部分地区,产量很有限。为了保证生漆的供应, *** 在生漆产地设立漆园,派专门官吏管理。生漆要饮水,饮水的多少决定生漆的质量。法律规定,征收生漆要到官府试水、饮水。管理者必须掌握饮水的计算方法。《筭数书》中“饮漆”,就是这种测试生漆质量的计算方法。它纳入《筭数书》肯定比“方田”要晚。在解决问题的方法上,由具体事例入手,然后归纳出同类问题的一般解决办法,即“答”后面的“术”。从全书的体例结构看,它是一种开放的归纳体系。这种编纂体例直接影响着《九章算术》,并成为中国古代数学著作的传统。

介绍中国最早的数学专著《筭数书》的更多相关文章

  1. 一位民国数学家,他身边人全是大师,杨振宁:当年读他文章受教了

    民国时期的大师,多如繁星,每一位都是名满天下的人物,在皓月之光的照耀下,还有一些知名度不那么高的教育家,他们的实力非常强,只是知名度不高罢了,今天野哥的这篇文章,就是为了纪念一位名声传播不那么广泛,但是却一直未我国教育作出贡献的数学家,他的名字叫刘薰宇。杂志面世以来,得到了广大的师生好评,除了刘薰宇等人外,还吸引不少各个领域的大咖来为《中学生》杂志撰稿。

  2. 1500年前的数学家如何计算球体积?中国古代这三位真是数学神仙

    《易·系辞》中说:「”上古结绳而治,后世圣人易之以书契”,说明古人结绳和契刻的方式记数和记事。西安半坡村出土的陶器上有直线、三角、方、菱形及一些复杂的几何图形,同时期人们创造了画圆和画方的工具规和工具矩,中国的数学可以追溯到5000到6000年前。半坡陶符光影图然而,很多人认为中国的古代数学其实不是数学,最多被称为算术或者算学,不同于西方以古希腊为代表的基于逻辑推理下的数学。比如:勾股定理,无论是

  3. 从「 ”轻重缓急”看古代数理文化中的数的维度思考

    轻重缓急这个成语出自清·顾炎武《日知录》卷七:「”古之人有至于张空弮、罗雀鼠而民无二志者,非上之信有以结其心乎?此又权于缓急轻重之间而为不得已之计也。”通常被解释为:各种事情中有主要的和次要的,有急于要办的和可以慢一点办的。这种解释实际并不是很确切。轻重、缓急两个思考的侧面被分隔开来,但是古代的数理文化并非这种理解。轻重缓解的二维思考按照轻重缓急的方式进行的四种分类基于线性逻辑思考,事情可以被这样

  4. 1+1为什么等于2?你真的了解哥德巴赫猜想吗

    陈景润证明的不是1+1=2,也不是1+2=3,这是一个常见的误解。要理解1+1的意思,首先要回到哥德巴赫本身。1742年,哥德巴赫给欧拉的信中提出了以下猜想:任一大于2的整数都可写成三个质数之和。但是哥德巴赫自己无法证明它,于是就写信请教赫赫有名的大数学家欧拉帮忙证明,然而一直到死,欧拉也无法证明。

  5. 160年前德国一文科生提出的数学理论,至今无人能够证明

    费马的这一断定,直到他去世300多年后,人们才第做出了一次证明。和上述两位数学家一样神奇的是,德国的一位文科生,像费马一样提出了一个数学猜想,而这个猜想至今还没有人能够证明。根据现有的数据,截止2017年,从哥廷根大学走出的诺贝尔奖获奖人数为45人,数量为德国第2位、世界第15位。

  6. 97岁杨振宁:和爱因斯坦交谈1.5小时,我却没有得到智慧,很遗憾

    我国历史上杨振宁的出现,应该称得上是一个传奇,他23岁留美,在35岁的时候就获得了诺贝尔奖,其成就可想而知。那么他和爱因斯坦是怎样扯上关系的呢?两人在爱因斯坦的办公室里,与他谈了一个半小时。

  7. 他的文史、英语双满分,数学只有0分,被北大拒绝却被清华录取

    提及到我国近代的「”偏科学霸”们,大家心中肯定有很多人选。臧克家先生、钱钟书先生等,都是大家耳熟能详的人物。今天要说的这位「”偏科学霸”却有点儿不一样,让咱们一起来看看有什么不一样吧。这位「”偏科学霸”叫做吴晗。吴晗,浙江省义乌市人。他是我国著名历史学家、社会活动家。尤其是在研究明史上,吴晗是开拓者和奠基者之一。和其他「”偏科学霸”不一样的是,吴晗在小的时候学习并不是一帆风顺。吴晗的父亲是秀才出身

  8. 韩信的数学天赋究竟有多厉害?他留下两道题,到现在都是经典

    韩信的数学天赋究竟有多厉害?他留下两道题,到现在都是经典作为汉初三杰之一,韩信的...天赋毋庸置疑,在跟随刘邦之后,韩信也帮助刘邦击败了项羽,赢得了楚汉战争的胜利,韩信也因为超高的...天赋被人们誉为「”兵仙”,不过韩信除了超高的...天赋外,在数学方面也有很高的天赋,韩信的一生曾留下两道著名的数学题,至今都被奉为教科书式的经典。第一道数学题就是韩信点兵的故事,一次,韩信率军碰上了龙且的军队,双方

  9. 高斯不敢发表的数学原理,他发表后被权威打压,死后十二年被承认

    1823年一位三十岁出头的数学家发表了一篇论文《几何学原理》,当这篇论文被送到俄罗斯科学院进行审读时,在场的专家给出了一致的评价——狗屁不通。托西蒙诺夫、古普费尔和博拉斯曼纷纷对此表示惊讶,随后就给予了全盘否定。他的名字,他学校的名字,他研究的课题,被全天下的人知道了,罗巴切夫斯基、喀山大学、非欧几何。

  10. 渣男之神薛定谔、牛顿心眼超级小:让人想不到的科学家的黑历史

    拍马高手伽利略溜须拍马的事儿可能大家都干过,拍的最理直气壮当然是李诗仙。

随机推荐

  1. 适合结婚放的歌曲有哪些

    适合结婚放的歌曲有哪些Waybackintolove电影《K歌情人》的插曲,这不像前面哭哭滴滴的苦情歌,是一首活泼可爱的小情歌,男女对唱,诉说著找到了对方为自己的生活带来了不一样的色彩。Couldthisbelove这是一首很适合翩翩起舞的歌曲,虽然是首老歌,也没有新的翻唱版本,但这种复古的感觉不是更能给婚礼带来一丝永恒的感觉吗?适合结婚放的歌曲有哪些爱蔡琴:蔡琴的声线得天独厚,醇厚的女低音对场地和音响要求很高。

  2. 梦见挖芋头

    周公解梦梦见挖芋头是什么意思,是怎么回事,意味着啥,代表什么。做梦梦到挖芋头是什么预兆,好不好呀,预示着未来会发生啥呢?会有啥征兆。

  3. 梦见文凭官诰 梦见文凭官诰什么意思

    梦见文凭官诰是什么意思?梦见文凭官诰有现实的影响和反应,也有梦者的主观想象,请看下面由小编帮你整理的梦见文凭官诰的详细解说吧。梦见文凭被母校收回,那可能是你自己觉得你的文凭在工作中没有发挥多大的作用。梦见毕业在生活中你可能会遇到一些不小的坎坷,主要是因为你自己的财运降低得非常的迅速而导致的。原版周公解梦梦官诰文凭符敕。梦得官诰者贵,失官诰者凶。有文凭者荣,无文凭者辱。人授官符子贵,失官符者儿亡。

  4. 曹锟是怎么从一个混混当上军阀的?最后是怎么死的?

    1882年,迫于生计,20岁的曹锟做起了往保定贩布的营生,但却遭到清军守城士兵的羞辱。一气之下曹锟应募入伍,并随后进入了袁世凯的新军。随后,日本人又通过曹锟的老部下以及伪政权高官高凌霨前往劝降。同年5月,曹锟病逝。曹锟之所以拒绝劝降,一方面是因为他亲英美的态度,另一方面则是他的早年经历。曹锟参军后,先是在天津武备堂学习,1894年又入朝,与日军交战。

  5. 梦见别人帮我化妆

    周公解梦梦见别人帮我化妆是什么意思,是怎么回事,意味着啥,代表什么。做梦梦到别人帮我化妆是什么预兆,好不好呀,预示着未来会发生啥呢?会有啥征兆。

  6. 莲音小故事——七、几个真实的小故事

    ◎几个—真实的小故事道证法师主讲莲音编辑组整理敬爱的学长们:阿弥陀佛!这里有几个真实的故事,他们在末学困顿时,发挥很大的鼓舞力量,也许有一天学长们也用得上,愿与学长们共用。这是一位冒着生命危险,来参加斋戒学会的老菩萨的故事。在放射治疗接近尾声时,因为放射剂量已经大到相当的程度,在照射的部位,皮肤难免会有一些反应:破皮。医院里值班的护士小姐,也是很虔诚学佛的,常常参加斋戒学会。

  7. 【类分】的意思是什么?【类分】是什么意思?

    5.清郑观应《盛世危言女教》:“别类分门,因材施教。”

  8. 顾盼自雄的意思是什么?

    【拼音】gùpànzìxióng【解释】左看右看,自以为了不起。形容得意忘形的样子。【出处】《宋书·范晔传》:“跃马顾盼,自以为一世之雄。”【例子】少年恃其刚悍,顾盼自雄,视乡党如无物。(清·纪昀《阅微草堂笔记·姑妄听之》)【相关】百度“顾盼自雄”

  9. 姓名对事业的影响_姓名测试

    而且,姓名五行数理还对人生起著潜移默化的影响作用。从姓名的天格与人格的理数关系以,及三才配置可以推断出一个人事业成功的概率是高还是低。天格是祖先留下来的,只由姓决定,所以其数理对人影响不大。起错名的后果_姓名测试艸(草),草字头,按草字计,为六画。

  10. 青少年死于“长发公主综合症”:为什么人们要吃头发?

    在青少年病例中,然而,发球最终导致了一种称为腹膜炎的疾病,或者腹部衬里发炎,据林肯郡现场报道。这种情况会导致全身炎症,导致器官关闭。大量的头发伯恩维特说,需要通过手术切除,手术后,患者通常需要心理治疗来解决他们为什么首先要吃头发的问题。

返回
顶部